Review of Harvest Green

I recently took a drive through Harvest Green, a master planned community located in Richmond, Texas. Currently being developed by the Johnson Development Corporation it features agriculture and gardening as a central theme. Amenities include a working farm; optional backyard raised bed gardens; a trail system; herb gardens in some common areas; lakes; and a fitness center with pool, splash pad, and playground. I toured the community to review its drainage system, and amenities, and to see how the two were integrated.

The master planned community will eventually occupy 1,300 acres; however, only the first few sections have been completed thus far. This is an illustration of the complete master plan.

Masterplan obtained from online development literature. https://www.harvestgreentexas.com/masterplan

In some locations the four lane main roads drain to depressed areas planted with native grasses and shrubs that provide some detention and retention of stormwater (see below). I was unable to tell if these areas subsequently drain directly to underground storm sewers and then to a detention basin or if the drainage flows through a bioretention system first. I was also unable to tell if including these areas allowed the development to proceed with a lower volume of centralized detention. [If anyone involved in the design of this project knows, please leave a comment.]

Photograph by M. Bloom.

Each of these low areas has educational signage identifying it as a “Native Meadow” (see below). This helps residents and visitors, who may be used to a more formal and manicured type of landscaping, know that the tall prairie grass and wildflowers are intentional and are part of the “natural” and “wild” Harvest Green experience and brand.

Photograph by M. Bloom.

Many of the homes have backyards adjacent to trail or creek corridors. The photograph below shows a trail along Oyster Creek. Homes along this corridor have an open fence design along back lot lines. I did not notice if gates were provided for easy home owner access to the trail system. Landscaping includes a mix of both mowed turf grass and unmowed “wild” areas with native grasses and flowers.

Photograph by M. Bloom.

Some creek corridors don’t currently include trails and are not served by backyard gates. The photograph below shows an example of this. This is a bit of a missed opportunity to integrate both natural amenities and natural drainage into these corridors.

Photograph by M. Bloom.

While some of the main roads appear to drain to natural systems, local residential streets do not. All of the local streets appear to be served by traditional curb and gutter drainage systems with underground pipes flowing to centralized detention basins. The basins were built deeper than required for detention purposes and were clay lined so that they hold some permanent water and serve as amenity lakes.  The photograph below shows the traditional raised curb and a pair of side-by-side curb inlets. As noted previously, the more extensive use of natural drainage systems can reduce the need for end-of-pipe detention systems. I was not able to tell if Harvest Green was able to take advantage of that benefit.

Photograph by M. Bloom.

A recycled water system has been added to the community’s wastewater treatment system and recycled water lines have been installed throughout the development to be used for landscape and farm irrigation. State rules require the recycled water piping system be purple and signage be installed to reduce the risk of people drinking the recycled water. The quality of the water is perfectly safe for watering food crops, but it is not intended for direct human consumption. See photograph below.

Photograph by M. Bloom.

Like most suburban communities in the region, the entry points are marked with large, illuminated, entry monuments and signage.  The photograph below shows one of the entry monuments to Harvest Green.

Photograph by M. Bloom.

But this monument is a bit unusual. It is solar powered! The photograph below shows the photovoltaic cells and what I assume is a battery system of some kind.

Photograph by M. Bloom.

The Johnson Development Corporation and their design team used natural drainage approaches to manage the runoff from some areas of the master planned community. They integrated amenities and drainage system in some areas. They deployed non-potable water reuse systems and solar systems to improve the sustainability of the development.

Their marketing of the community has focused on the natural amenities, agricultural features, and gardening elements to differentiate their offering to home buyers, some of whom are looking for a more active and engaged lifestyle and to live in a more sustainable and environmental friendly community.

The Johnson Development Corporation (and their planning and design professionals) should be commended for what they have accomplished in Harvest Green.

Buffalo Bayou and Tributaries Resiliency Study

In the aftermath of Hurricane Harvey, the federal government appropriated $6 million and authorized the U. S. Army Corps of Engineers (USACE) to conduct the Buffalo Bayou and Tributaries Resiliency Study.

According to the USACE, the study will: Identify and evaluate the feasibility of reducing flood risks on the Buffalo Bayou, both upstream and downstream of Addicks and Barker Reservoirs in Harris County, Texas, while simultaneously completing a Dam Safety Modification Evaluation (DSME) on the two dams. Three primary problems will be addressed: (1) Flooding downstream of the reservoirs on Buffalo Bayou; (2) Performance and risk issues related to flow around and over the uncontrolled spillways; and (3) Flooding upstream of the reservoirs.

Map of the study area. The Cypress Creek watershed is included only to evaluate the overflow from that watershed into Addicks. Brays Bayou will not be considered during the development of risk reduction options but it will be considered when determining potential adverse impacts.

The Corps requested public input on the scope of the study and comments were due on May 31, 2019.

I helped coordinate the development of comments on behalf of the Houston Chapter of the Environment & Water Resources Institute of the American Society of Civil Engineers. The text of the submitted comments is provided below:

The Houston Branch of the Texas Section of the American Society of Civil Engineers appreciates the opportunity to comment on the above referenced resiliency study.  Our comments are provided below.

  1. Sustainable Infrastructure: Alternatives should be evaluated using the Institute for Sustainable Infrastructure’s ENVISION rating system.  Alternatives with the highest score in the rating system should be considered further for implementation.  See sustainableinfrastructure.org for additional information about the rating system.
  2. Non-Stationary Climate: Alternatives should be developed to handle rainfall amounts that have a 1% annual chance (or greater) occurring in the year 2100.  Rainfall depths appear to be trending upwards and the 1% annual chance event will likely be larger at that time.
  3. Nature-Based Alternatives: Alternatives should be developed and evaluated that include nature-based approaches, such as land acquisition and preservation, wetland creation, natural stable channel design approaches, and similar concepts.
  4. Two-Dimensional Modeling of Non-Riverine Areas: Alternatives should be evaluated using 2-D modeling approaches, especially in areas not adjacent or near bayous or channels.
  5. Triple-Bottom-Line Net Cost/Benefit Estimations:  Alternatives should be evaluated using a more comprehensive assessment of net benefits and costs. Net costs should be estimated for traditional engineering economics inputs, such as construction costs, operations costs, maintenance costs, land acquisition costs, and labor cost.  But environmental costs should be estimated as well. These should include the value of any diminished ecosystem services, lost habitat, lost carbon sequestration, lost oxygen production, lost heat island mitigation, lost recreational opportunities, and similar well studied metrics.  Social costs should also be estimated for each alternative. These should include displaced cultural or historical features, lost recreational opportunities, lost or diminished employment opportunities, diminished views and character, light pollution impacts, diminished social equity, and similar aspects. Net economic, social, and environmental benefits should also be estimated for each alternative.  These would include the value of avoided property damage (times the likelihood of loss), the number of people benefiting from a reduced risk of inundation, the value of any increase in social values or benefits (recreation, views, safety, equity), the value of any increase in environmental values or benefits (habitat, ecosystem services, etc.).  The net present value of all economic, social, and environmental BENEFITS minus the net present value of all economic, social, and environmental COSTS should be calculated for all alternatives and the alternative with the highest net present value of total triple bottom line NET BENEFITS should be recommended for implementation.

Again, we appreciate the opportunity to comment on the scope of the study.  If there are any questions about our comments, please don’t hesitate to contact us.

Very truly yours,

AMERICAN SOCIETY OF CIVIL ENGINEERS – HOUSTON BRANCH

Leave a comment about what you or your organization thought the study should consider.